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1. Setting & Motivation

Generative models are an increasing important topic in modern AI and already have
consequences for broader society. Models such as GPT and Stable Diffusion have
demonstrated and forced us to consider the full range of benefits and dangers
presented by generative models. For example, the benefits range from new creative
technologies to automated assistants capable of a wide range of tasks to help with
scientific discoveries. The harms are numerous as well: the generation of false news
and mass propaganda, disrupting fair evaluation in education, and the careless
violation of privacy and copyright. Autoencoder- and Diffusion-based architectures
represent two of the most popular architectures in modern generative models. This
dissertation does important work to understand (i) the information / structure
encoded in the latent representations of these models, (ii) the wider utility of the
representations, and (ii) the stability of the representation / its information when the
model is fine-tuned on additional or different data. Topic (iii) will be especially
important in the near future as people wish to apply foundation models to an
increasingly wide range of tasks by way of finetuning. The dissertation respectively
terms these three topics as “structure”, “applications”, and “consolidation”. Overall, I
find the dissertation timely, well-motivated, and in conversation with the research
frontier in terms of both applications and theory.

2. Novelty and Impact

2.1 End-to-End Sinkhorn Autoencoder

The contribution of the End-to-End Sinkhorn Autoencoder with Noise Generator
(E2E-SAE) is to essentially define two encoders, one that maps random noise into the
latent space and another that deterministically maps the sample into the same latent
space. This presents a clever way to separate representation learning from the prior,
as representation learning can happen on the deterministic path. Moreover, when
combined with the stochastic encoder, the architecture still remains a proper
generative model, as the deterministic encoder should generate outputs that follow



the aggregate prior implicitly defined by the other encoder. Moreover, this prior is
also updated by the Sinkhorn loss for extra flexibility.

The model is clearly useful and competitive with the state-of-the-art, as
demonstrated by the experiments that range from image to calorimeter generations.
Thus, the model is clearly meets the bars for impact and novelty. My primary critique
of the methodology is in regards to its ability to perform representation learning. I
thought this was the primary motivation for the dual encoders, as described above,
but I do not see any results that analyze the method’s ability to perform good
representation learning.

2.2 Analyzing Generative and Denoising Capabilities of Diffusion-Based Deep
Generative Models

Diffusion models have achieved impressive success in their ability to generate
high-quality, realistic, even seemingly creating images. While they are foundationally
well-defined and understood as a continuous diffusion process, their computational
pipeline consists of 1000+ steps. Unlike precursors models like VAEs and GANs, the
subcomponents of diffusions models—if they even exist—-are hard to identify, let
alone determine their role in image generation. This work aims to address this open
problem, understanding the role of groups of steps of the diffusion.

In what I consider to be the highlight result of the dissertation, empirical analysis is
conducted to show that diffusion models have two distinct phases: a generation
phase and a denoising phase. The former is comprised of the first 80-90% of steps
of the model, meaning that the model uses most of its capacity to translate noise
into a structured image. The remaining 10-20% of steps are used to denoise the
image in a fairly input-agnostic way. This perspective is further validated by
successfully replacing the denoting steps with a denoising autoencoder, showing
that this modular structure is indeed present. My only comment on this work is that,
while the work on Generalized DAEs by Bengio et al. [2013] is mentioned, I thought
their proposed ‘walk-back' training procedure might be quite related to the proposed
DAED model, as it also applies several steps of noise to the input before passing it
into an autoencoder.

2.3. Learning Data Representations with Join Diffusion Models

This work continues the theme of probing and understanding diffusion models,
further investigating the information contained in the intermediate states.
Specifically, this work considers defining a joint distribution (so called ‘hybrid model’)
that models both the features and a label, thereby doing both unsupervised density
estimation as well as classification. The authors propose a clever, U-Net-based



model that sits in the middle of the diffusion process—not at the end, like previous
approaches have done—and transports the intermediate states across the levels of
the ‘U’. The classifier can then use the features obtained at various points of the
diffusion. Impressively, this model demonstrates all of the characteristics that a
hybrid model promises: pure classification and generation, semi-supervised learning,
and transfer learning. Moreover, the authors do this with a sensible, natural
objective, not needing the ‘hacks’ that previous models have needed to balance
generation and classification.

2.4. BinPlay: A Binary Latent Autoencoder for Generative Replay Continual Learning

Continual learning (CL)—the ability for a model to learn from a stream of new tasks,
just as humans do, yet still retain past information—is a hallmark goal of artificial
intelligence. Generative replay is a popular technique for CL, allowing the model to
revisit previous important datapoints so as to not forget the information they
provided. The work described in this section presents an interesting and practical
take on the problem by formulating a generative model with a discrete latent space.
Binary codes representing past data points can be stored and then fetched and
passed to the decoder to obtain the full feature vector, which then can be passed to
the classifier for replay. The experiments demonstrate strong classification
performance in the CL setting and also report the memory footprint, verifying the
motivation to use binary codes. While beyond the scope of the work, it would have
been interesting to see the work better exploit the strong structure of binary codes
to, e.g. organise the latent space into semantic concepts or some other hierarchy.

2.5. Multiband VAE

In this chapter, the dissertation describes a new procedure for unsupervised CL in
which a local model is first trained on the task and then a global ‘translator’ model
aggregates the local encodings. The motivation for such an approach is to cope
with catastrophic forgetting—a key problem when performing CL. In short, the
translator is trained with replay in order to prevent such forgetting. The experiments
demonstrate that the model is competitive-to-superior to other SOTA generative CL
models (in terms of FID score). This demonstrates the utility of this sensible
approach. My only critique is that I wonder if such an approach will be less sample
efficient, especially for later tasks, as the model cannot use information from
previous tasks to help with learning later tasks.



3. Evaluating the Written Document

Overall, the document is in the appropriate format, providing the necessary context
and background information before diving into specific works in the middle chapters.
The document closes with a summary and research questions for future work, which
are appropriate, if a bit short-sighted. I have only two remarks for improvements:
Regarding the E2E-SAE model, I found the description rather algorithmic in that it
describes what the model it doing in a procedural manner. However, I think a more
conceptually ‘cleaner’ presentation is to separately define the generative model, the
inference model, and the training procedure. This makes clear when one could make
alternative choices for each of these building blocks. Secondly, the switch to
continual learning is somewhat abrupt. Perhaps this could be better integrated into
the background on generative models. Alternatively, it could be kept in its current
place but with more, earlier discussion about the connections between generative
modelling and continual learning (what’s currently in 7.2). Yet, in summary, I found
the dissertation a pleasure to read. See the appendix for detailed comments on
minor points.

4. Conclusions

The reviewed dissertation of Kamil Deja, MSc., meets the requirements for doctoral
dissertations by the Act on Scientific Degrees and Academic Title of 14 March 2003
(Journal of Laws No. 65) as it presents novel, impactful concepts that push forward
the discipline of Computer Science. This fact is further supported by the prestigious
and selective venues in which the dissertation’s material has already been published
(e.g. Neural Information Processing Systems 2022, International Joint Conference on
Artificial Intelligence 2022). Any critical remarks presented above should not detract
from my incontrovertibly positive assessment. I request that the doctoral degree be
awarded to Kamil Deja, MSc, and due to the prestige and impact the work has
already gathered, I recommend the degree be awarded with honors.

Please do not hesitate to contact me at e.t.nalisnick@uva.nl if you have any further
questions.

Sincerely,

Eric Thomas Nalisnick, PhD



Appendix: Detailed Remarks

p 13: “Normalising flows (Rezende and Mohamed, 2015) and Glows (Kingma and
Dhariwal, 2018) are explicitly trained to map original data samples into a
lower-dimensional manifold through invertible operations”: Firstly, Glow is a type of
normalizing flow, and secondly, I find the statement “map…samples into a
lower-dimensional manifold” a bit misleading since flows preserve dimensionality.
This does happen by introducing inductive biases such as multi-scale architectures,
but the core mathematics does not allow this.

Eq 2.1, 2.2, 2.3, 2.4, and others: loss functions / optimization objectives should
usually be written as functions of the parameters that one would optimize (theta and
phi, in this case 2.1)

p 26 “we cannot simply propagate a gradient through a random node.”: This is an
overstatement since the reparameterization trick wasn’t the first method to
differentiate through samples. For instance, Kingma & Welling could have used the
existing score function estimator (REINFORCE). The contribution is more of
providing a practical, low-variance gradient estimator (with the plus that, when
combined with the variational approximation, made the overall computation graph
look like an autoencoder).

p 28, 48, 61, 85, and others: You give several references in NAME [YEAR] format but
look like they should be in [NAME, YEAR] format.

p 34: The reference to my paper should be ICLR 2019, not 2018. Moreover, I’m not
sure my paper is the best one to cite when describing the effect of the aggregated
posterior. My contribution is more about the aggregated posterior’s effect on OOD
detection. I first learned about the aggregated posterior from the VAE papers that
re-write the ELBO to include a KL term between the aggregated and per-data-point
posteriors, for the purposes of representation learning. This was also discussed in
the VampPrior paper, which pre-dates my ICLR 2019 paper.

Eq 4.3 and 4.4: Could be written in one line instead of two.

Eq 9.1, 9.2, 9.3: These expressions should be set equal to something


